« Back to top page

4.1.0

4.1.0

AutoSampler

Abstract This package automatically selects an appropriate sampler for the provided search space based on the developers’ recommendation. The following article provides detailed information about AutoSampler. 📰 AutoSampler: Automatic Selection of Optimization Algorithms in Optuna Class or Function Names AutoSampler This sampler currently accepts only seed and constraints_func. constraints_func enables users to handle constraints along with the objective function. These arguments follow the same convention as the other samplers, so please take a look at the reference.

Differential Evolution Sampler

Abstract Differential Evolution (DE) Sampler This implementation introduces a novel Differential Evolution (DE) sampler, tailored to optimize both numerical and categorical hyperparameters effectively. The DE sampler integrates a hybrid approach: Differential Evolution for Numerical Parameters: Exploiting DE’s strengths, the sampler efficiently explores numerical parameter spaces through mutation, crossover, and selection mechanisms. Random Sampling for Categorical Parameters: For categorical variables, the sampler employs random sampling, ensuring comprehensive coverage of discrete spaces. The sampler also supports dynamic search spaces, enabling seamless adaptation to varying parameter dimensions during optimization.

NSGAIISampler Using TPESampler for the Initialization

Abstract This sampler uses TPESampler instead of RandomSampler for the initialization of NSGAIISampler. APIs NSGAIIWithTPEWarmupSampler This class takes the identical interface as the Optuna NSGAIISampler. Example from __future__ import annotations import optuna import optunahub def objective(trial: optuna.Trial) -> tuple[float, float]: x = trial.suggest_float("x", -5, 5) y = trial.suggest_float("y", -5, 5) return x**2 + y**2, (x - 2) ** 2 + (y - 2) ** 2 package_name = "samplers/nsgaii_with_tpe_warmup" sampler = optunahub.