Abstract
This package automatically selects an appropriate sampler for the provided search space based on the developers’ recommendation. The following article provides detailed information about AutoSampler.
Class or Function Names
- AutoSampler
This sampler currently accepts only seed
and constraints_func
.
constraints_func
enables users to handle constraints along with the objective function.
These arguments follow the same convention as the other samplers, so please take a look at the reference.
Installation
This sampler requires optional dependencies of Optuna.
$ pip install optunahub cmaes torch scipy
Note that since we may update the implementation of AutoSampler
, it is highly encouraged to use the latest version of Optuna.
Example
import optuna
import optunahub
def objective(trial):
x = trial.suggest_float("x", -5, 5)
y = trial.suggest_float("y", -5, 5)
return x**2 + y**2
module = optunahub.load_module(package="samplers/auto_sampler")
study = optuna.create_study(sampler=module.AutoSampler())
study.optimize(objective, n_trials=300)
Test
To execute the tests for AutoSampler
, please run the following commands. The test file is provided in the package.
pip install pytest
pytest package/samplers/auto_sampler/tests/
- Package
- samplers/auto_sampler
- Author
- Optuna Team
- License
- MIT License
- Verified Optuna version
- 4.1.0
- Last update
- 2024-11-15