Abstract
This sampler uses TPESampler instead of RandomSampler for the initialization of NSGAIISampler.
APIs
- NSGAIIWithTPEWarmupSampler
 
This class takes the identical interface as the Optuna NSGAIISampler.
Example
from __future__ import annotations
import optuna
import optunahub
def objective(trial: optuna.Trial) -> tuple[float, float]:
    x = trial.suggest_float("x", -5, 5)
    y = trial.suggest_float("y", -5, 5)
    return x**2 + y**2, (x - 2) ** 2 + (y - 2) ** 2
package_name = "samplers/nsgaii_with_tpe_warmup"
sampler = optunahub.load_module(package=package_name).NSGAIIWithTPEWarmupSampler()
study = optuna.create_study(sampler=sampler, directions=["minimize"]*2)
study.optimize(objective, n_trials=60)
- Package
 - samplers/nsgaii_with_tpe_warmup
 - Author
 - Shuhei Watanabe
 - License
 - MIT License
 - Verified Optuna version
 - 4.1.0
 
- Last update
 - 2024-11-22