« Back to top page

Sampler using Whale Optimization Algorithm

Swarm Algorithm Inspired by Pod of Whale

Class or Function Names

  • WhaleOptimizationSampler

Example

Open In Colab

from __future__ import annotations

import matplotlib.pyplot as plt
import optuna
import optunahub


WhaleOptimizationSampler = optunahub.load_module(
    "samplers/whale_optimization"
).WhaleOptimizationSampler

if __name__ == "__main__":

    def objective(trial: optuna.trial.Trial) -> float:
        x = trial.suggest_float("x", -10, 10)
        y = trial.suggest_float("y", -10, 10)
        return x**2 + y**2

    sampler = WhaleOptimizationSampler()
    study = optuna.create_study(sampler=sampler)
    study.optimize(objective, n_trials=100)
    optuna.visualization.matplotlib.plot_optimization_history(study)
    plt.show()

Others

Reference

Mirjalili, Seyedali & Lewis, Andrew. (2016). The Whale Optimization Algorithm. Advances in Engineering Software. 95. 51-67. 10.1016/j.advengsoft.2016.01.008.

Package
samplers/whale_optimization
Author
mist714
License
MIT License
Verified Optuna version
  • 3.6.1
Last update
2024-11-14