Class or Function Names plot_contour Example from optuna.visualization import plot_contour plot_contour(study) Others See the documentation for more details.
Class or Function Names plot_param_importances Example from optuna.visualization import plot_param_importances plot_param_importances(study) Others See the documentation for more details.
Class or Function Names plot_hypervolume_history Example from optuna.visualization import plot_hypervolume_history plot_hypervolume_history(study, reference_point) Others See the documentation for more details.
Class or Function Names plot_intermediate_values Example from optuna.visualization import plot_intermediate_values plot_intermediate_values(study) Others See the documentation for more details.
Class or Function Names plot_optimization_history Example from optuna.visualization import plot_optimization_history plot_optimization_history(study) Others See the documentation for more details.
Class or Function Names plot_parallel_coordinate Example from optuna.visualization import plot_parallel_coordinate plot_parallel_coordinate(study) Others See the documentation for more details.
Class or Function Names plot_pareto_front Example from optuna.visualization import plot_pareto_front plot_pareto_front(study) Others See the documentation for more details.
Class or Function Names plot_hypervolume_history Example mod = optunahub.load_module("visualization/plot_hypervolume_history_with_rp") mod.plot_hypervolume_history(study, reference_point) See example.py for more details. The example of generated image is as follows.
Class or Function Names plot_sampling_speed Installation This module requires the following dependencies:
matplotlib scipy Example A minimal example would be the following:
from collections import defaultdict import matplotlib.pyplot as plt import optuna import optunahub def objective(trial) -> float: return trial.suggest_float("x", -5, 5)**2 studies = defaultdict(lambda: []) for i in range(3): sampler = optuna.samplers.RandomSampler() study = optuna.create_study(sampler=sampler) study.optimize(objective, timeout=1.0) studies["Random"].append(study) sampler = optuna.samplers.TPESampler() study = optuna.create_study(sampler=sampler) study.optimize(objective, timeout=3.0) studies["TPE"].append(study) plot_sampling_speed = optunahub.
Class or Function Names plot_slice Example from optuna.visualization import plot_slice plot_slice(study) Others See the documentation for more details.
Class or Function Names plot_step_distribution Installation You should install plotly to use this visualization.
$ pip install plotly Example This plot shows how many steps (budget, epoch, iterations, etc.) were consumed before pruning occurred for each trial.
fig = plot_step_distribution(study) See example.py for a full example. The following figures are obtained from the analysis of the optimization.
Class or Function Names plot_terminator_improvement Example from optuna.visualization import plot_terminator_improvement plot_terminator_improvement(study) Others See the documentation for more details.
Class or Function Names plot_timeline Example from optuna.visualization import plot_timeline plot_timeline(study) Others See the documentation for more details.